
A Differential Equation for the Juggling Data

Annotated Analyses in Matlab

Before you begin, don’t forget to add the path to the functional data analysis functions.
On my system, this is achieved by the command

addpath('../fdaM')

The Data

The data to be analyzed in these notes are the registered X-, Y-, and Z-coordinates for the
juggling data described in Chapter 12.  It is assumed that you have already registered
these data as described in the document “Registering the Juggling Data”.  If you have
done that, and have saved the results as a .mat file juggle, then you just have to enter this
command to begin:

load juggle

The Principal Differential Analysis

We will continue the strategy that we adopted in the notes on registration of keeping the
sequences intact.  That is, we will develop a differential equation separately for each
sequence, and then only combine information across sequences when these equations
have been estimated.

The main difference between these analyses and those carried out on the printing data is
that here we treat all three coordinates as a unitary system, and develop a single coupled
linear differential equation that describes the simultaneous behavior of the three
coordinates.  By contrast, for the printing data we developed separate equations for each
coordinate, and each coordinate equation made no use of  any information in the data on
the other coordinates.

The function that we use here for the principal differential analysis is pdasystem.  We
will develop a second order linear differential equation in velocity separately for each
sequence.  We will tell the function that we want a third order equation, but in fact we
will weight the position of the coordinates by zero, and only make use of the behavior of
velocity, acceleration, and the third derivative, jerk.



Our first task is to set up the arguments for function pdasystem.  Here we set the order
of the equation.

pdaorder = 3;

The vector festimate has three logical values indicating whether we want to estimate
the forcing function � j(t) for coordinate j, j=1, 2, 3.  In this case we will not estimate the
forcing functions.  This means that the differential equation is homogeneous.  In this case,
we can refer to the residual functions as the forcing functions.

The matrix westimate contains logical values indicating which derivative weight
functions  � j(t)  will be estimated and which will be fixed.    Only the order zero weight
function is fixed.  Note that because the sysem is coupled, westimate is in effect three
3 by 3 matrices stacked on top of one another, each matrix representing the contributions
of a specific derivative to all three coordinates.  Moreover, the first of these 3 by 3 matrix
is the contribution of the position, or zeroth derivative, and is therefore set to 0 since we
will fix these weight functions to zero.

festimate = zeros(3,1);
westimate = ones(9,3);
westimate(1:3,:) = 0;

We also need to specify the amount of smoothing, if any, that will be applied to the
estimates of these functions.  In this case we won’t be doing any smoothing.

flambda = zeros(3,1);
wlambda = zeros(9,3);

The intercept and weight functions require a basis specification since the function will
return functional data objects for them.  Here we use the Fourier basis of with seven basis
functions, defined by a constant plus three sine/cosine pairs.   We can set the number of
basis functions at this point, but the actual basis will have to defined separately for each
sequence.

nbasispda = 7;

Here we set up some arrays to store results.

D3mean    = zeros(201,3);
resid     = zeros(201, 3, 123);
residmean = zeros(201,3);
wcoef     = zeros(nbasispda, 9, 3, 10);



Now we have to loop through the sequences, with a sizable amount of computation
within the loop.  Consequently, as we did with the registration process, we will assume
that you have defined the loop with these statements

m = 0;
for i=1:10
…
end

Note that we will need the index variable m, and that it is initialized at 0 prior to entering
the loop.

Now we look inside the loop.  So consider that all the code that we discuss from now on
is within the above loop.

First we specify the number of basis functions needed for defining the B-spline expansion
of the registered data for this sequence..

nbasis  = 1 + 11*seqn(i);
if nbasis  == round(nbasis /2)*2, nbasis  = nbasis  + 1;  end

The duration of the sequence must be calculated as well as the duration of the target
sequence.

period0 = timepercycle*seqn(i);

Set up a vector for the range of the sequence.

rng0 = [0,period0];

Now define a Fourier basis  for the observed sequence.

basisi = create_fourier_basis(rng0, nbasis, period0);

Use this basis as well as the coefficients of the expansion computed in the registration
phase to set up a functional data object for the sequence.

coefi  = reshape(coefreg(1:nbasis,:,i),[nbasis,1,3]);
fdregi = fd(coefi, basisi);

Also set up a basis for the forcing functions and the weight functions.

wbasis = create_fourier_basis(rng0, nbasispda, timepercycle);
fbasis = wbasis;



Finally, in our setting up of the analysis, we need to supply some default values for the
forcing and weight functions.  These values won’t affect the functions being estimated,
but these will supply the zero values for � 0k(t ), as well as for the forcing functions, whic
we don’t choose to estimate.

ffd0 = fd(zeros(nbasispda,3),   fbasis);
wfd0 = fd(zeros(nbasispda,9,3), wbasis);

Now we’re in a position to complete the principal differential analysis of this sequence.

[ffdi, wfdi, resfdi] = pdasystem(fdregi, difeorder, ...
                            fbasis, flambda, ffd0, festimate, ...
                            wbasis, wlambda, wfd0, westimate);

Now we need to store some results, both for the entire sequence, and also for each cycle
within the sequence.  First, store the coefficients of the expansion for the weight
functions.

wcoef(:,:,:,i) = getcoef(wfdi);

This loop passes through each of the cycles and saves the values of the third derivative or
jerk and also of the residual function, as well as accumulating the mean jerk and mean
residual functions.

for j=1:seqn(i)
    m = m + 1;
    timecyclej = timecycle+(j-1)*timepercycle;
    resid(:,:,m) = eval_fd(resfdi,timecyclej);
    D3mat = squeeze(eval_fd(fdregi,timecyclej,3));
    D3mean    = D3mean + D3mat./123;
    residmean = residmean + squeeze(resid(:,:,m))./123;
end

This concludes the loop through the ten sequences.

Here is the entire loop.

m = 0;
for i=1:10
    fprintf(['Sequence ',num2str(i),'\n'])
    nbasis  = 1 + 11*seqn(i);
    if nbasis  == round(nbasis /2)*2, nbasis  = nbasis  + 1;  end
    period0 = timepercycle*seqn(i);
    rng0 = [0,period0];
    basisi = create_fourier_basis(rng0, nbasis, period0);
    coefi  = reshape(coefreg(1:nbasis,:,i),[nbasis,1,3]);
    fdregi = fd(coefi, basisi);



    wbasis = create_fourier_basis(rng0, nbasispda, timepercycle);
    fbasis = wbasis;
    ffd0 = fd(zeros(nbasispda,3),   fbasis);
    wfd0 = fd(zeros(nbasispda,9,3), wbasis);
    [ffdi, wfdi, resfdi] = pdasystem(fdregi, difeorder, ...
                            fbasis, flambda, ffd0, festimate, ...
                            wbasis, wlambda, wfd0, westimate);
    wcoef(:,:,:,i) = getcoef(wfdi);
    for j=1:seqn(i)
        m = m + 1;
        timecyclej = timecycle+(j-1)*timepercycle;
        resid(:,:,m) = eval_fd(resfdi,timecyclej);
        D3mat = squeeze(eval_fd(fdregi,timecyclej,3));
        D3mean    = D3mean + D3mat./123;
        residmean = residmean + squeeze(resid(:,:,m))./123;
    end
end

Plotting the Results

Now we want to plot up our results.  First, let’s look at the quality of the fit by plotting
the mean residual functions, along with standard error lines; and also with the mean jerk
function to provide a point of reference for how the mean residuals are.  This is Figure
12.5 in the text.

Here we compute the standard deviations of the residuals functions.

residstddev = zeros(201,3);
for m=1:123
    residstddev = residstddev + ...
        (squeeze(resid(:,:,m))-residmean).^2./122;
end
residstddev = sqrt(residstddev)./sqrt(123);

Set up some labels for the coordinates.

coordlabs = ['X','Y','Z'];

Now plot the mean residuals for each variable.

for j=1:3
   plot(timecycle,residmean(:,j),                    '-',   ...
        timecycle,residmean(:,j)+2.*residstddev(:,j),'r--', ...
        timecycle,residmean(:,j)-2.*residstddev(:,j),'r--', ...
        timecycle,D3mean(:,j),'--', [0,timepercycle],[0,0],':')
   title(['\fontsize{12}', coordlabs(j),' Coordinate'])
   axis([0,timepercycle,-400,500])
   pause
end



We would now like to have a look at the weight functions that we have estimated.   We
first compute the mean weight function coefficients.

wcoefmean = zeros([nbasispda,9,3]);
for i=1:10
    wcoefmean = wcoefmean + wcoef(:,:,:,i)./10;
end

Now set up a basis for the weight functions that ranges only over a single cycle, and
make a functional data object using the mean weight coefficients.

pdabasis = create_fourier_basis([0,timepercycle], nbasispda);
wfd = fd(wcoefmean,pdabasis);

Now we plot the weight functions.  There will be six panels arranged in two rows and
three columns.  In the top row are the weights placed on the velocities, and in the bottom
row the weights on the accelerations.  The first column contains the weights for the X-
coordinate, the second for the Y-coordinate, and the last for the Z-coordinate.  Within
each panel, we have the actual weight functions specific to the derivative and coordinate
for the corresponding row and column, respectively.  There are three weight functions
within each panel, the blue being the weight for the X-coordinate, green for Y-coordinate,
and red for the Z-coordinate.  You will tend to see the weight being the largest for the
coordinate defined by the column.  The weights for acceleration are much less than those
for velocity because acceleration itself is generally much larger than velocity.

wfdmat = eval_fd(wfd,timecycle);
for j=1:3
    subplot(2,3,j)
    temp = squeeze(wfdmat(:,4:6,j));
    plot(timecycle, temp(:,1), '-', ...
         timecycle, temp(:,2), '--', ...
         timecycle, temp(:,3), '-.', ...,
         rng, [0,0], 'k:')
    axis([0, .711, -300, 900])
    if j==1, ylabel('\fontsize{16} Velocity'); end
    title(['\fontsize{16} ',coordlabs(j),' Coordinate'])
    subplot(2,3,j+3)
    temp = squeeze(wfdmat(:,7:9,j));
    plot(timecycle, temp(:,1), '-', ...
         timecycle, temp(:,2), '--', ...
         timecycle, temp(:,3), '-.', ...,
         rng, [0,0], 'k:')
    axis([0, .711, -25, 25])
    if j==1, ylabel('\fontsize{16} Acceleration'); end
end



Solving the Differential Equation to Recover Fit to Position

The residual or, equivalently, forcing functions plotted above indicate the fit of the
equation to the third derivative.  But of course we’d also like to examine the fit of the
equation to position, velocity, and acceleration at the same time.  That is the great
attraction of a differential equation;  it gives a model for four levels of derivative rather
than just only for the zeroth order derivative, or positon.

The following code solves the homogeneous linear differential equation defined by the
weight functions.  It uses Matlab function ode45 and also the functional data analysis
function derivsn.

global wfd
ystart = eye(9);
yarray = zeros(201,9,9);
for i=1:9
  [tp,yarray(:,:,i)] = ode45('derivsn', timecycle, ystart(:,i));
end

The array yarray contains position values for three linearly independent basis functions
spaning the nullspace of the linear differential operator in the first three levels of the
second dimension, velocity values in the second three levels, and acceleration values in
the last three levels.  The dimension of the null space is actually 9, but because we didn’t
estimate the position weights, we only need the last six basis functions.  Here we extract
what we need.

vel = zeros(201,6,3);
vel(:,:,1) = squeeze(yarray(:,4,4:9));
vel(:,:,2) = squeeze(yarray(:,5,4:9));
vel(:,:,3) = squeeze(yarray(:,6,4:9));

Now we can examine each cycle in turn, plotting the observed velocity as a set of points,
and the fitted velocity as a solid line.

for i=1:10
    nbasis   = 1+11*seqn(i);
    if nbasis == round(nbasis/2)*2, nbasis = nbasis + 1;  end
    period0  = timepercycle*seqn(i);
    rng0     = [0,period0];
    coefi    = reshape(coefreg(1:nbasis,:,i),[nbasis,1,3]);
    basisi   = create_fourier_basis(rng0, nbasis, period0);
    fdregi   = fd(coefi, basisi);
    for j=1:seqn(i)
        timecyclej = timecycle+(j-1)*timepercycle;
        D1y = squeeze(eval_fd(fdregi,timecyclej,1));
        for k=1:3
            zmat = [onen,squeeze(vel(:,:,k))];
            D1yhat(:,k) = zmat * (zmat\D1y(:,k));
        end



        for k=1:3
            subplot(3,1,k)
            plot(timecycle, D1y(:,k),    '-', ...
                 timecycle, D1yhat(:,k), '--', ...
                 [0,timepercycle], [0,0], ':')
            axis([0,.717,-2.5,2.5])
            ylabel(['\fontsize{16} D',coordlabs(k),' (m/s)'])
            if k==1
                title(['Sequence ',num2str(i), ...
                       ' Cycle ',num2str(j)])
            else
                title('')
            end
        end
        pause
    end
end

As you page through these 123 plots, you will perhaps by impressed by how well the
solution to the differential equation can track the cycle-to-cycle variation in the
velocities.  This has been achieved by replacing 369 within-cycle coordinate functions,
each requiring about 11 basis functions to represent,  by 18 weight functions, each
represented by seven basis functions.


