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Summary

We develop a functional linear model where the values at t of a sample of

curves yi(t) are explained in a feed-forward sense by the values of covariate

curves xi(s) observed at times s � t. Special attention is given to the case

s 2 [t � Æ; t], where the lag parameter Æ is estimated from the data. The

�nite element method is used to estimate the bivariate parameter regression

function �(s; t), which is de�ned on the triangular domain s � t . The model

is applied to the problem of predicting the acceleration of the lower lip during

speech on the basis of electromyographical recordings from a muscle depress-

ing the lip. Simulation results are also provided to guide the calibration of

the �tting process.

Key words: Finite element method; functional data analysis; functional

linear model.
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1 Introduction

This paper considers a functional regression problem in which one curve is

used as the independent variable to explain the variation in another. Ramsay

and Silverman (1997) considered several such models, but here we look at a

new situation in which the inuence of the carrier function on the outcome

process is of a feed-forward nature. The model proposed here is useful in

statistical analyses involving longitudinal, functional or time series samples,

which are widely used in natural, medical and social sciences.

As an illustration, consider that an indicator of a patient's recovery, y(t),

may depend linearly on the time course of a treatment variable x(s), and

that this relation logically only involves times s � t. Moreover, there may be

some reason to suppose that only treatments at times s 2 [t� Æ; t] for some

lag Æ � 0 are likely to have an impact on y(t).

In this paper, we apply this model to data from a speech production

experiment. In Sections 2 and 3 we describe the data and what we call the

historical linear model. In Section 4 we de�ne least squares estimation for

the regression function in the linear model, and in Section 5 we de�ne the

triangular �nite element basis that we use for its expansion. Techniques for

assessing �t are taken up in Section 6, and the results of applying the method

to the speech data in Section 7.
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2 The Speech Data

Speech is what our species does best. In conversation, an English speaker

easily pronounces 14 phonemes per second, and this rate appears to be limited

by the cognitive aspects of language rather than by the physical ability to

perform the articulatory movements. Considering the muscles of the thoracic

and abdominal walls, the neck and face, the larynx and pharynx, and the

oral cavity, there are over 100 muscles that must be controlled centrally

(Lenneberg, 1984).

The timing of the activation of di�erent groups of muscles is a central

issue for the anatomy and physiology of speech. A noninvasive method for

collecting data on muscle activation comes from electromyography (EMG),

which exploits the fact that muscle contractions are accompanied by electro-

chemical changes. A resting muscle is isopotential and generates no current,

but when it is stimulated, the resulting excitation travels along the muscle

as waves of action potentials; and if electrodes are attached to the skin over

the muscle, they can pick up these potentials. The time taken for a neural

signal to be transduced into muscle contraction can vary considerably, but

for the facial muscles a representative value is about 50 msec.

Figure 1 displays the data that are analyzed in this paper. A subject was

required to say the syllable \bob" N = 32 times. The duration of the syllable

varied, but was time-normalized to 700 msec. The movement of the center
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of the lower lip is shown in the upper panel. The middle panel shows the

accelerations of the center of the lower lip, denoted as yi(t); i = 1; : : : ; N , and

accelerations, by Newtons's second law, reects the force applied to tissue by

muscle contraction. The lower panel displays the so-called linear envelopes of

EMG activities, denoted by xi(s), recorded in the primary muscle depressing

the lower lip, the depressor labii inferior (DLI). More information about the

preprocessing steps will be found in the appendix.

The lower lip trajectory can be segmented into roughly �ve epochs, sep-

arated by dotted lines in Figure 1. The central interval corresponds to the

/o/, during which the lip is stationary. To produce each /b/, the lip moves

up and down. The DLI muscle plays two roles: Antagonist, when it brakes

the movement during the ascending phases, and agonist when it accelerates

the lip during the descending phases. Antagonist episodes are reected by

EMG bursts as the acceleration crosses zero while moving from a positive

to a negative phase; and agonist activity by bursts at the start of the lip's

descents.

3 The historical linear model

Let 0 and T indicate the initial and �nal times of the 32 records, and let

Æ indicate a time lag, beyond which we conjecture that there is no feed-

forward type inuence of x(s) on y(t). That is, y(t) is inuenced by x(s) for
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s0 � s � t, with s0 = max(0; t� Æ).

We will assume that x(s) inuences y(t) linearly according to the following

model that integrates this inuence from s0 to t:

yi(t) = �(t) +

Z t

s0

xi(s)�(s; t) ds+ �i(t) ; t 2 [0; T ]: (1)

Here the function �(t) is a �xed intercept function that allows for the relation-

ship between the mean lip and mean EMG curves, but cannot accommodate

their covariation e�ects. The residual function �i(t), reects the inability of

the linear model to �t the data completely, and we assume that E[�i(t)] = 0

with Cov[�i(t); �j(t)] = 0; i 6= j.

We might call this the historical linear model in the sense that the inu-

ence of x(s) is assumed to be only forward in s, and therefore is part of the

history of y(t). Hastie and Tibshirani (1993), Ramsay and Silverman (1997)

and others have considered the pointwise model, also called the varying co-

eÆcient model, resulting from Æ ! 0,

yi(t) = �(t) + xi(t)�(t) + �i(t) ; (2)

in which the regression function �(t) depends only on t. The central question

in this research is, then, whether � depends on both s and t, as opposed to

only t, and how far back, Æ, this dependency goes. Since s � t, the regression

coeÆcient function �(s; t) is de�ned on a subset of a triangle, as illustrated

in Figure 2.
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A model involving a bivariate regression function has already been con-

sidered by Ramsay and Silverman (1997). Model (1) is a re�nement of this

previous model which integrates over all of [0; T ]. Here we modify the shape

of the domain of � from square to triangular, to reect the asymmetry of

the relation between the two sets of functions. Also, the domain restriction

in model (1) is intended to improve explanative and descriptive qualities, in

contrast to predictive ones.

4 Estimation of the regression function �(s; t)

Let us �rst simplify model (1) by dropping the intercept function �(t). Since,

from the normal equations,

�(t) = �y(t)�

Z t

s0

�x(s)�(s; t) ds ;

by substitution, we obtain

y�i (t) =

Z t

s0

x�i (s)�(s; t) ds+ �i(t) (3)

where x�i (s) = xi(s)� �x(s). In order to further simplify expressions, we drop

the asterisk in what follows.

Regression function �(s; t) can be approximated by an expansion e�(s; t)
in terms of K known basis functions

e�(s; t) = KX
k=1

bk�k(s; t) : (4)
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De�ning

 ik(t) =

Z t

s0

xi(s)�k(s; t) ds ; (5)

we have the alternative formulation

yi(t) =
KX
k=1

bk

Z t

s0

xi(s)�k(s; t) ds+

Z t

s0

xi(s)�a(s; t) ds+ �i(t)

=
KX
k=1

bk ik(t) + �0i(t) ; (6)

where �a(s; t) = �(s; t)�e�(s; t) is the approximation error, and �0i(t) combines

the random and the approximation errors.

5 The triangular �nite element basis

We use the �nite element method, often used to solve partial di�erential equa-

tion systems, to represent �(s; t) as a continuous piecewise linear function

constructed from piecewise linear basis functions that are zero everywhere

except for a small region (Ames, 1992; Brenner & Scott, 1994). First the

domain of �(s; t) is subdivided into triangular regions, as shown in Figure

2. Sixteen triangles are shown in the �gure, but in fact we used up to 676

triangles in our work. These triangles are the so-called the elements of the

method.

The vertices of these triangles, called nodes, correspond to the basis func-

tions �k(s; t) as follows. For each node k, �k(s; t) is linear in s and t over all

triangles, continuous, equal to 1 at the node itself, and zero over all triangles
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not having this node as a vertex. For nodes not on the boundary of the do-

main, these conditions imply that �k(s; t) is nonzero only over the hexagonal

region made up of triangles next to node k. Figure 3 shows the tent-like form

of the basis function for node 13. These conditions also imply that, at any

point (s; t) in the interior of a given triangle, there will be at most only three

basis functions having nonzero values, and these will correspond to the three

nodes that are the vertices of this triangle.

This choice of a basis system has a number of advantages over the usual

practice of representing bivariate functions using tensor product basis func-

tions, such as tensor product B-splines. B-spline basis functions are de�ned

over a rectangular grid, equivalent to using rectangular elements. Rectangu-

lar elements do not conform naturally to the triangular domain needed here,

whereas triangular elements do. Moreover, the number of basis functions

having positive values for a given t is determined by counting the number of

nodes next to the corresponding line of integration. For example, with the

triangulation shown in Figure 2, this number is seven for t = 0:43. Then,

as the number of triangular elements increases, the proportion of basis func-

tions having positive values for a given t decreases. As a consequence the

design matrix in (7) below de�ning estimated values for the bk's, which is

sparse, becomes increasingly so as the discretization mesh is re�ned. The use

of sparse matrix computational methods can greatly speed up the solution of
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this equation. Finally, the evaluation of any basis function over an element

involves the evaluation of a function linear in s and t, and therefore is very

fast.

The triangulation shown in Figure 2 is also helpful when considering how

large the lag Æ should be in modelling the feed-forward inuence of x(s):

Triangles falling beyond Æ units from the diagonal are simply eliminated,

so that the manipulation of Æ corresponds to selecting subsets of the basis

functions. Of course, we can only set Æ at discrete values, but this is not a

problem if we make the triangular mesh suÆciently �ne. Letting � indicate

the width of a single triangle, we are permitted to use lag values Æ = m�,

for integers m = 0; : : : ;M (M� = T ); and the number of nodes is then

(m + 1)(M � m=2 + 1). When Æ = m = 0, e�(s; t) reduces to a polygonal

spline representation of the variation on the diagonal �(t; t) withM +1 basis

functions. Note also that the use of a suÆciently �ne triangulation permits

us to assume that the �0i(t) are globally homoskedastic, even if they are not

expected to be so over one single element.

We may approximate the model in the form (6) by a multivariate linear

model as follows. Evaluating yi(t); i = 1; : : : ; N at a �nite set of time points

tq; q = 0; : : : ; Q, for each record i leads to

E[Yi] = 	iB ; (7)
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where

Yi =

2
64
yi(t0)
...

yi(tQ)

3
75 ; 	i =

2
64
 i1(t0) � � �  ik(t0) � � �  iK(t0)

...
. . .

...
. . .

...
 i1(tQ) � � �  ik(tQ) � � �  iK(tQ)

3
75 ;

and B = (b1; : : : ; bK)
0.

By stacking these matrices Yi and 	i on top of each other to obtain

N(Q+1)� 1 and N(Q+1)�K matrices Y and 	, respectively we obtain the

least squares estimator of B,

bB = (	0	)�1	0Y : (8)

We found that Q = 4n equally spaced time points, where n is the number

of intervals in [0; T ] used for the triangulation, gave a satisfactory level of

precision, with acceptable computational overhead.

6 Assessing Fit

The assessment of �t by comparing two historical linear models, one em-

bedded within the other, raises a number of issues, and our proposals in

this section are only intended to be preliminary to further work. However,

the historical linear model does share with all linear models the property of

mapping a parameter vector space, denoted by G1, of dimension dfG1 into

an outcome Hilbert space H of dimension dfH by means of a linear operator

L. The image of this mapping is denoted by Ŷ1. The space G1 here consists

of regression functions �(s; t) representable by the �nite element basis, the
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dimensionality dfG1 of which equals the number of nodes determined by the

mesh density M and lag Æ = m�. A model assessment involves comparing a

�t based on all of G1 with that provided by a subspace G0 of dimensionality

dfG0, with an image Ŷ0.

The dependent variable space H consists of N independently sampled

functions yi, each function being representable within a function space of

dimension, say, KH . If we use centered functions to �t model (3) the dimen-

sionality of H is dfH = (N�1)KH ; otherwise it is NKH . Dimensionality KH

in turn is the minimum of the number of basis functions used to represent

each yi and the number of sampling points at which each function is observed

in the raw data. However, if a roughness penalty or regularization procedure

is employed, assessing KH is more complex, and a discussion of this issue can

be found in Hastie and Tibshirani (1990) and Ramsay and Silverman (1997).

If the linear operator L is of full rank, then the dimension of the subspace

of H containing the image Ŷ1 = L�1 for �1 2 G1 is dfG1; if the reduced

model �0 2 G0 is involved, the dimensionality of the subspace containing Ŷ0

is dfG0. It can be shown in this very general context from the nature of the

inner product that, if the full and reduced models are �tted by minimizing

kY �Ŷ k2, thenH is partitioned into the direct sum of three orthogonal spaces

containing Y � Ŷ1, Ŷ1 � Ŷ0 and Ŷ0, respectively; and that the dimensions of

these subspaces are dfH � dfG1; dfG1 � dfG0 and dfG0, respectively.
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The procedure described above for estimating � will in general be of

full rank, although in any actual application the design matrix 	 should

certainly be checked for nonsingularity. The squared norm is the squared

error criterion

kY � Ŷ k2 = SSE =

Z T

0

NX
i=1

fyi(t)� ŷi(t)g
2 dt : (9)

However, our �tting method is not precisely least squares because we actually

minimize the discretized criterion kY�	Bk2. But, provided that the number

of sampling points Q is suÆciently large, it seems appropriate to assume the

orthogonal decomposition described above, and that the associated degrees

of freedom are approximately correct.

Consequently we may be guided in model selection by

R2 = 1� SSE1=SSE0 ; (10)

and, moreover,

F =
(SSE0 � SSE1)=(dfG1 � dfG0)

SSE1=(dfH � dfG1)
(11)

can be inspected as a means of assessing the importance of the global im-

provement in �t in going from the simpler model to the more powerful al-

ternative. This use of the F -ratio as a model selection tool is based on the

orthogonality of the subspaces of H containing Y � Ŷ1 and Ŷ1� Ŷ0, and that,

when the reduced model holds, the lack of �t per degree of freedom in the

two associated subspaces of H should be approximately equal. One should
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probably stop short, however, of taking tabled values of the F -distribution

as descriptions of its reduced model behavior since the numerator and de-

nominator may not be assumed to have normalized chi-square distributions.

However, this type of global analysis may be of only limited interest if it

seems clear that the improvement in �t depends strongly on t. Consequently,

in addition to these two scalar measures of �t, we will want to display mea-

sures of �t as functions of t, for instance,

RMSE(t) =
p
SSE(t)=N ; (12)

where SSE(t) =
PN

i=1fyi(t)� ŷi(t)g
2, which allows for closer time related

analyses.

7 The regression of lip acceleration on EMG

A �rst issue is how �ne to make the triangulation, which controls the smooth-

ness and the amount of detail in the estimated �(s; t). We used a preliminary

calibration step in which we tested the method on a data set created from our

actual EMG functions xi(s) using these intercept and regression functions:

�(t) = 2 sin(40t) + 2 cos(20t)

�(s; t) = 0:5 sin(30s) + 0:5 cos(30t) (13)

For the model involving integration on the whole triangular domain (Æ =

M� = T ), we computed the true dependent variable functions yi(t) with
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�i(t) = 0. We used triangulations into n2 elements, n = 4, 6, . . . , 26, where

n is the number of intervals into which the horizontal and vertical boundaries

of the triangular domain are divided. This means from 15 to 378 nodes, and

from 16 to 676 triangular elements.

Using squared correlations R2 de�ned in (10), we found, as expected,

that the �ner the mesh the better the �t. Figure 4 shows e�(s; t) for 190
nodes and 324 elements, for which R2 = 0:997. These results reassured us

that the variation among the 32 EMG records was, in principle, suÆcient

to support estimation of a regression function with considerable local detail.

For the analysis of our actual data, we chose a triangulation of the whole

domain into 196 elements or 120 nodes, and this gave R2 = 0:991 for this

calibration problem. This triangulation corresponds to dividing [0; T ] into

M = 14 intervals with lengths � = 50 msec, roughly equal to the delay

mentioned above necessary for a neural signal to be transduced into muscle

contraction.

The second issue is the width of the domain of integration Æ, which in

this case is set at the discrete values m�: From Figure 5, we see that the

�t steadily improves as we enlarge the domain of integration from Æ = 0

(R2 = 0:17) up to Æ = 6� (R2 = 0:46), corresponding to 300 msec, but does

not increase substantially with larger values.

Figure 6 shows the estimate of the bivariate regression function �(s; t),
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corresponding to Æ = 6�. We estimated the standard error of �(s; t) by

drawing 1000 bootstrap samples from among the 32 acceleration functions.

Figure 7 shows estimated �'s values, with 95% pointwise con�dence bands,

for �(s; t) along the diagonal s = t.

The shape of the estimate of �(s; t) indicates, as expected, that the muscle

activation is the most inuential around the lip closure times, when the

signal-to-noise ratio is the largest. Also, there is a ridge of inuence along

the diagonal, corresponding to the transduction delay of about 50 msec. But

peaks deeper in the triangular domain reveal covariation of EMG events and

lip displacements separated by longer delays. For instance, the peak at about

s = 250 msec and t = 500 msec cannot be interpreted in terms of immediate

causal relationship between muscle activation and lip acceleration. Rather it

can be explained as follows. The agonist depressing activity of the DLI ends

at around 250 msec, and this determines the position reached by the lower lip

for the production of the /o/. The amplitude of the upward movement that

follows depends on this position; and, consequently, so does the deceleration

during the second part of this movement that is necessary to allow for an

adequate closing of the lips for the second /b/. This illustrates how the

pronunciation of a phoneme is determined by the chain of phonemes within

which it is embedded.

Next, we speci�cally examined how well this version of the model performs
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in comparison to the one using lag Æ = 0, that is, reduced to the pointwise

model (2). Because there is inevitably less �tting power for values of t < Æ

than for t where the full history of EMG is available, we chose to consider

only values of t going from 6� to T.

R2 values computed over this range of t are 0.57 and 0.22 for lags Æ = 6�

and Æ = 0, respectively. Plotting the corresponding error functions RMSE(t),

de�ned in (12), in the top panel of Figure 8 shows that the model using the

wider lag is superior speci�cally around the second closure time; making clear

that the explanatory value of the past behavior of the EMG curves varies

with the events to be explained. The small failure of the RMSE(t) for Æ = 6�

to be greater than that for Æ = 0 at t = 0:36 is due to the use of discrete

values of t to estimate the models.

The bottom panel of Figure 8 shows F -ratio values integrated over each

�-wide intervals. Here, 100 basis functions were used to represent each of the

N = 32 acceleration functions from data sampled at n = 501 points without

regularization, so we have KH = 100 and dfH = 3100. With M = 14, we

have dfG1 = 84 and dfG0 = 15, so the degrees of freedom are 69 and 3016

for the numerator and the denominator respectively, and the critical value is

F:05 = 1:27.
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8 Discussion and Conclusions

Our application of the historical linear model (1) described the contribution

of a facial muscle to the articulation of a phoneme. We could see that, in

addition to the straightforward causal e�ects involving conversion of electro-

chemical into mechanical energy, more complex mediate inuences take place

over delays as long as 300 msec.

At least two groups of muscles applying force in di�erent directions are

generally necessary to control the motion of a body part, and three groups

of muscles contribute to the motion of the lower lip. Our model, by using

the activation pattern of only one single group of muscles, could explain

only a limited part of the variation observed in the lip accelerations, and

this contributed to the modest R2 values that we obtained. Including the

inuences of the other two groups of muscles would have introduced an addi-

tional integral for each set of explanatory functions. However, we judged that

the number of replications available could only support a single functional

independent variable.

As with any linear model, there should be some careful consideration of

whether the variation in the covariate x(s) is suÆcient to support a reason-

ably detailed �t to the observed dependent variable y(t). In the multivariate

context, this would correspond to checking the design matrix for near singu-

larities. We felt that a calibration experiment such as the one that we used,
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based on the actual covariates, o�ers a useful indication of whether a known

regression function �(s; t) can be recovered, and we found our results to be

encouraging.

It is possible to envisage a number of approaches to the representation

of the regression function �(s; t), and to the estimation of the parameters or

coeÆcients de�ning this representation. We chose the �nite element approach

because it conforms naturally to the triangular domain for �(s; t), is easy to

evaluate, permits an arbitrary amount of detail in the estimate, and leads to

a sparse matrix linear equation de�ning the estimate. These are important

assets when the estimate needs to have complex features. The �nite element

method has already proven itself in other areas of applied mathematics, and

there are well-developed software tools available in languages like Matlab for

tasks such as the triangulation of the domain (MathWorks, 1995).

A next step is to add the possibility of regularizing or smoothing the

estimate of �(s; t) or the prediction of yi(t) through the use of roughness

penalties. These roughness penalties will require the use of basis functions

�k(s; t) of higher order, but again these have already been well worked out

in the �nite element analysis literature.
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Appendix

The raw data consisted of two-dimensional positions measured in meters in

the sagittal plane sampled 625 at Hz. Jaw position was also recorded, and

subtracted from lip position. Although two-dimensional position measure-

ments were taken, in fact the trajectory of the lower lip was nearly linear, and

consequently the data were reduced to one-dimensional coordinates by prin-

cipal components analysis. The lip data were �rst smoothed by the robust

lowess smoother in S-PLUS to eliminate the occasional outlying recordings.

These data were in turn approximated using 100 B-spline basis functions.

The spline basis was of order 6 in order to assure that the second derivative

of the expansion would be reasonably smooth. A light roughness penalty on

the fourth derivative was applied to the expansion in order to further smooth

the second derivative, using the method described in Ramsay and Silverman

(1997).

The EMG activity of depressor labii inferior (DLI) was recorded, in milli-

volts, using bipolar surface electrodes. Using Matlab software, EMG signals

were analogue low-pass �ltered at 600 Hz and digitally sampled at 1,250 Hz.

The resulting signals were digitally band-pass �ltered between 30 and 300

Hz, and full-wave recti�ed, i.e., absolute values were computed. To obtain

the linear envelopes, the full-wave recti�ed signals were digitally low-pass

�ltered at 20 Hz, with a no-lag second-order Butterworth �lter. These latter
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were �nally linearly interpolated to �t the lip data sampling rate.
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Figure 1: The upper two panels show the position and acceleration of the

center of the lower lip, respectively, during the articulation of the syllable

\bob". The lower panel displays the linear envelopes of the EMG activity

associated with the depressor labii inferior (DLI) muscle. The vertical dotted

lines separate distinct segments in the motion of the lower lip.

Figure 2: The large triangle is the domain for the regression function �(s; t)

in the historical linear model. The horizontal axis s is time for the indepen-

dent variable x(s), and the vertical axis t is time for the dependent variable

y(t). The smaller triangles within the larger triangle, labelled T 1; : : : ; T 16,

are �nite elements used to approximate �(s; t). The �fteen vertices of these

triangles, called nodes, correspond to basis functions �k(s; t). The horizontal

dashed line shows which elements play a role in determining the behavior of

y(t) at t = 0:43:

Figure 3: The basis function �13(s; t) corresponding to the 13th node in the

triangulation shown in Figure 2.

Figure 4: The estimate of the regression function �(s; t) for the calibration

problem (13), corresponding to R2 = 0:997.

Figure 5: The squared correlation measure (10) as a function of lag Æ = m�:

Figure 6: The estimated regression function �(s; t) for lag Æ = 6� for the

actual data.
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Figure 7: The solid line is the value of the estimated regression function

along the diagonal, �(t; t): The dashed lines indicate plus and minus two

standard errors estimated by bootstrapping.

Figure 8: The top panel shows the error function RMSE(t) for the models

with lag Æ = 6� (solid line) and Æ = 0 (dashed line). The bottom panel

shows F-ratio values integrated over each �-wide intervals. In both panels,

the vertical dotted lines indicate boundaries between elements.
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