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The Crime Life Course data

Because the original data are proprietary, it will not be possible for users to run these analyses on
the same data as discussed in the book.  Nevertheless, it should be possible to follow the steps of
the analysis as described below.   The first few lines of the real data set are as follows:

Number of reported offences for 413 men year by year from age 11 to age 35 inclusive

3 0 0 1 0 1 0 0 0 0 0 1 3 0 1 0 0 1 0 0 1 1 0 0 0
1 0 2 0 0 2 1 0 5 6 0 4 4 2 7 3 1 3 4 3 3 1 0 0 0
0 1 0 0 1 3 2 5 3 0 0 0 0 2 1 1 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0
1 2 1 0 0 0 4 2 2 1 0 2 0 1 0 2 2 6 6 0 1 0 0 1 1
0 0 3 2 1 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 1 0 0
1 0 1 1 0 0 0 0 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 2 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Each line refers to a single individual in the data set, and gives the 25 counts of numbers of
arrests of that individual at each age from 11 to 35.

Reading in and preprocessing the data

The first step is to read in the data..  Assume that the original data are held in the file
crime.dat in the same directory as the Splus data files.   The original file crime.dat has
some comments in the first line, which we need to skip.   Also, because the data refer to years 11
to 35, we give the resulting table column names to that effect.      Finally, we want to handle our
data as a matrix rather than a data frame, so we turn it into one by using the function as.matrix.

crimdat.in <- as.matrix( read.table(file="crime.dat", skip=1,
col.names=11:35))

If we construct a histogram of the total number of crimes committed by each individual
in the sample, we get a very long-tailed distribution.   Taking the square root of the number of
crimes committed in each year reduces the skewness somewhat.    To see this, plot

hist( apply(crimdat.in, 1, sum), nclass=20)
crimdat.sqrt <- sqrt(crimdat.in)
hist(apply (crimdat.sqrt, 1, sum), nclass=20)

The square root transformation is further suggested because a Poisson distribution might be a
rough model for the number of crimes committed per year, and the square root transformation
stabilizes the variance of the Poisson distribution.
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Creating functional observations

The next step is to create functional observations from the annual data.     To do this, we refer the
data to a B-spline basis.     We can either use a basis with essentially as many (or even more)
basis functions as there are time points in the original observations, or we can use a basis with
fewer basis functions.  In the former case the fit to the original data will be exact and we may
have to choose between basis representations by  choosing the one with smallest roughness; in the
latter case we fit the basis by least squares.

In any case, the following function will yield a list with the necessary components:

bsplinesetup.fun <- function(y, n=min(50, dim(y)[2]))
{
#
#   Given a matrix y of data, find a B-spline basis based on at most (n-2)  internal knots.
#   In this version, the number of knots is reduced if there are not at least n time points
#     observed data
#
#  On input:  The rows of y represent observations and the columns time points.
#
#  Output: ycoef Matrix of spline coefficients, columns represent observations
# bmat Matrix giving values of bsplines at observation points
# jmat Matrix of integrals of crossproducts of B-splines
# kmat Matrix of integrals of crossproducts of second derivatives of B-splines
# meancoef Mean B-spline coefficients
# funmean Average function values
#
#     First find the knots
#

if(!is.matrix(y))  y <- t(as.matrix(y))
m <-  dim(y)[2]
nd <- dim(y)[1]
n <- min(n, m)
intkn <- seq(from = 0, to = 1, length = n)
kn <- c(0, 0, 0, intkn, 1, 1, 1)

#

#   Now find the crossintegral matrix jmat
#

bmat1 <- spline.des(knots = kn, x = seq(from = 0, to = 1,
length = 101))[[4]]

jmat <- 0.01 * t(bmat1) %*% bmat1
#

#  find the matrix kmat of integrals of products of second derivatives
#

zs <- spline.des(kn, intkn, deriv = rep(2,n))[[4]]
z1 <- zs[-1,  ]
z2 <- zs[-n,  ]
kmat <- 2*t(z1)%*%z1 + 2*t(z2)%*%z2 + t(z1)%*%z2 + t(z2)%*%z1
kmat <- kmat/(6*(n-1))
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#
#   Now find the matrix of values at the evaluation points, and the coefficients of the data.
#   If there are more bsplines than evaluation points, find the fit with the least roughness.
#

bmat <- spline.des(knots=kn, x=seq(from=0, to=1, length=m))[[4]]
if((n + 2) <= m) {

ycoef <- solve(bmat, t(y))
}
else {

bsvd <- svd(bmat, nv = n + 2)
baug <- rbind(bmat, t(bsvd$v[, (m + 1):(n + 2)]) %*% kmat)
zmat <- matrix(0, nrow = n + 2 - m, ncol = nd)
yaug <- rbind(t(y), zmat)
ycoef <- solve(baug, yaug)

}
#
#  Now find the mean coefficients and the values of the mean of the original data
#

meancoef <- apply(ycoef, 1, mean)
funmean <- bmat %*% meancoef
return(ycoef, bmat, jmat, kmat, meancoef, funmean)

}
>

To plot individual functions at a scale smaller than the original data, we need to have a spline
interpolation function.   The following function takes a vector yc of B-spline coefficients and
produces a vector of values y at an equally spaced vector x of length nvals:

bvals.fun <- function(yc, nvals = 101)
{
#
#   Given a vector of B-spline coefficients yc,
#

kn <- c(0,0,0, seq(from=0, to=1, length=length(yc)-2), 1,1,1)
xx <- seq(from = 0, to = 1, length = nx)
bmat1 <- spline.des(knots = kn, x = xx)[[4]]
yfun <- bmat1 %*% yc
return(x = xx, y = yfun)

}
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Smoothing the mean function

In some cases, for example the crime data, the overall mean function is not very smooth
and it will be desirable to find a smoothed version.   The output of the function bsplinesetup.fun
contains all the information needed to perform a roughness penalty smooth of the mean, and
indeed to calculate a functional cross-validation score to help with the choice of the smoothing
parameter.   The following functions enables this to be done.

funsmooth.fun <-  function(zs, spar)
{
#  carry out roughness penalty smoothing of the mean curve, following preprocessing
#   by the function bsplinesetup.fun.          On input
# zs is the output of bsplinesetup.fun
#    spar is the smoothing parameter
# On output
#     the values g of the smoothed mean function at the evaluation points
#    and the coefficients gcoef of the smoothed mean function are returned
#    
#

jlk <- zs$jmat + spar * zs$kmat
gcoef <- solve(jlk, zs$jmat %*% zs$meancoef)
g <- zs$bmat %*% gcoef
return(g, gcoef)

}
>

funsmoothcv.fun <- function(zs, spar)
{
#  calculates crossvalidation score for roughness penalty smoothing of the mean curve
# following preprocessing by the function bsplinesetup.fun.  On input
# zs is the output of bsplinesetup.fun
#    spar is a vector of smoothing parameters
#  The vector of cross-validation scores is returned.
#

nsp <- length(spar)
n <- dim(zs$ycoef)[2]
cvscores <- rep(NA, nsp)
for(j in (1:nsp)) {

jlk <- zs$jmat + spar[j] * zs$kmat
gcoef <- solve(jlk, zs$jmat %*% zs$meancoef)
smat <- solve(jlk, zs$jmat %*% zs$ycoef)
delresmat <- n * sweep(zs$ycoef, 1, gcoef) + smat - zs$ycoef
delresmatj <- t(delresmat) %*% chol(zs$jmat)
cvscores[j] <- sum(delresmatj^2)

}
return(cvscores)

}
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Because of the way that the curves are scaled, in practice very small values of spar may be
needed.    For example, for the crime data, typical values of spar are 1e-6 or even smaller.

The minimum of the crossvalidation score is given by spar=2e-7.     From a subjective point of
view, the resulting curve requires a little more smoothing, and so the value spar=1e-6 was
actually used.

funpca.fun <-  function(zz, spar = 1, zmean = zz$meancoef)
{
#
#  Takes the output of bsplinesetup.fun and carries out a smoothed functional PCA
#    with smoothing parameter equal to spar. This is taken straight from page 118
#    of Ramsay and Silverman, 1997, but with a vital correction.
#       If centered=T then it is assumed that the
#    mean or estimated mean has been subtracted from the coefficients zz$ycoef
#

zm <- zz$jmat + spar * zz$kmat
zm <- 0.5 * (zm + t(zm))
umat <- chol(zm)
lmat <- t(umat)
ycmat <- zz$jmat %*% sweep(zz$ycoef, 1, zmean)
dmat <- solve(lmat, ycmat)
cmat <- dmat %*% t(dmat)/dim(ycmat)[2]
eig <- eigen(cmat)
emat <- eig$vectors[, 1:10]
pcasmat <- solve(umat, emat)
pcabmat <- zz$bmat %*% pcasmat
vn <- apply(pcabmat, 2, vecnorm)
pcabmat <- sweep(pcabmat, 2, vn, "/")
return(pcabmat)

}
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Carrying out the analysis

We first of all refer the data to B-spline coefficients by using the function bsplinesetup.fun

crimdat.bs <- bsplinesetup.fun( crimdat.sqrt )

Having set up the functions, the analysis itself proceeds as follows.  First we find the minimum of
the crossvalidation score, by working out the score at a range of values.  Plotting spar against
cvvals gives the figure shown in the text.

spar <- c(1,2,4,7,10,20,40,70,100,200,400,700,1000,2000,4000,7000)/1e9
cvvals   <-   funsmoothcv.fun( crimdat.bs, sparvals)

The values and coefficients of the smoothed mean can be found by

crimdat.smcoefs <- funsmooth.fun( crimdat.bs, 1e-6)

To plot the smoothed mean, the easiest approach is

plot( spline (11:35, crimdat.smcoefs$g) , type="l")

The spline program will do exactly the same as finding the basis functions at a large number of
intermediate points.  If we simply plot the values crimdat.smcoefs$g we will get a piecewise
linear plot between the integer time points.

Now we move on to the smoothed functional principal components analysis.  Since the
coefficients of the smoothed mean are held in crimdat.smcoefs$gcoef, we can use these to
estimate the mean.

crimdat.spca <- funpca.fun(crimdat.bs, spar=1e-5,
zmean=crimdat.smcoefs$gcoef, centered=F)

To plot the resulting components, we add and subtract multiples of the components to the mean.
For instance, to display the first component,

matplot( 11:35,
cbind( crimdat.smcoefs$g,

crimdat.smcoefs$g + 0.05* crimdat.spca$wtfuns[,1],
    crimdat.smcoefs$g - 0.05* crimdat.spca$wtfuns[,1]),

type="l",col=1, lty=c(1,4,2),ylim=c(0,0.85), cex=1.5, ylab="Square
root of annual offences", xlab="Age")

zsmsm$pcscores _ crm.sqrt %*% zsmsm$spca


