
Predicting Lip Acceleration from EMG Activity

Annotated Analyses in Matlab

These analyses use some functions that are not part of the standard functional data
analysis package.  You can find them here in this web site.

To appreciate some of the details in the calculations, you will want to obtain the technical
paper by Malfait, Ramsay and Froda (2001).  This is also available at this web site.

Before you begin, don’t forget to add the path to the functional data analysis functions.
On my system, this is achieved by the command

addpath('../fdaM')

Inputting the Data

We have 32 records to input for each of three measurements taken over the 690 milliseconds
taken to utter “Say bob again.”  The measurements are:

1. The position of the lower lip along its trajectory of motion in millimeters.
2. The acceleration of the lower lip in meters per second per second.
3. A measure of  electromyographical  (EMG) activity in the principal muscle that controls

lip motion, the depressor labii inferior or DLI.
Each of these measures is stored  in a file with a row for each of the 501 time points and a column
for each record.

EMGmat    = load ('EMG.dat');
lipmat    = load ('LipAcc.dat');
lipposmat = load ('LipPos.dat');

We won’t actually use lip position in our analyses, but we include the data in case someone wants
to try some of alternative analyses.

We also want to define the number of records and the time values in seconds.

N = size(emgmat,2);
timevec = linspace(0,0.69,501)';

Converting the Lagged Data to Functional Data Objects

Now we want to set up the data with EMG lagged by 50 milliseconds.  We first set up a
fine mesh of time values, and then use linear interpolation to estimate lip acceleration



values between 50 and 690 milliseconds, and EMG activity values from 0 to 640
milliseconds.

tfine = (0:0.001:0.69)';
nfine = length(tfine);

lipmatlag = zeros(nfine-50,N);
EMGmatlag = zeros(nfine-50,N);

for i=1:N
    liptemp = interp1(timevec,lipmat(:,i),tfine);
    EMGtemp = interp1(timevec,EMGmat(:,i),tfine);
    lipmatlag(:,i) = liptemp(51:nfine);
    EMGmatlag(:,i) = EMGtemp(1:(nfine-50));
end

nfine = nfine - 50;
tfine = tfine(1:nfine);
T     = 0.64;

Now we convert these discrete data to functional data objects using a B-spline basis.

nbasis = 93;
norder =  6;
basis  = create_bspline_basis([0,T], nbasis, norder);

lipfd = data2fd(lipmatlag, tfine, basis);
emgfd = data2fd(EMGmatlag, tfine, basis);

We’ll also need the mean function for each variable.

emgmeanfd = mean(emgfd);
lipmeanfd = mean(lipfd);

And, too, centered functions, which are the functions less their respective means.

lipfd0 = center(lipfd);
emgfd0 = center(emgfd);

Plotting the Bivariate Correlation Function

The plot of the correlation between lip acceleration and EMG activity in Figure 10.2 was
a useful preliminary look at the relationship between the two measures.  Here is a color
version of that figure.

First we define a fine mesh of time values.

nfiney = 101;
tmesh = linspace(0,T,nfiney)';



Then we get the discrete data from the lagged functions.

lipmat = eval_fd(lipfd, tmesh);
emgmat = eval_fd(emgfd, tmesh);

Then compute the correlations between the measures across curves.
We are only interested in correlations between EMG activity at times less than or equal to
times for lip acceleration.

lipemgcorr = corrcoef([lipmat',emgmat']);
lipemgcorr = lipemgcorr(102:202,1:101);
for i=2:101, lipemgcorr(i,1:i-1) = 0; end

Now display the correlation surface.  Use the rotation and zoom features of Matlab’s
surface display function to examine the surface from various angles.

subplot(1,1,1)
colormap(hot)
surf(tmesh, tmesh, lipemgcorr')
xlabel('\fontsize{16} s')
ylabel('\fontsize{16} t')
axis([0,.64,0,.64,-1,1])
axis('square')

Defining the Finite Element Basis

Our basis system for expressing the bivariate regression function β(s,t) is defined by
dividing the area over which β(s,t)  is defined into a set of right triangles, as in Figure
10.3.  Each of these triangles is called an element of the system.

The triangular elements that define our basis system are determined by splitting the range
of time t into M equal intervals, each of width λ = T/M, where T is 640 milliseconds, the
time over which we have observed the data.  Here we use M = 13.

M = 13;
lambda = T/M;

We also need to specify over how many intervals back we will integrate the EMG
activity to predict lip acceleration.  We designate the number of intervals by B, and here
we use B = 5.  The width of the interval of integration is δ = B λ.

B = 5;

Now we set up the nodes,  which are the vertices of the triangles.  See Figure 10.3 for an
example.  There will one basis function in our expansion of  β(s,t) per node.  Our first
step is to set up the relationship between elements (triangles) and nodes (vertices).



Function NodeIndexation does this.  It returns a matrix with a row for each triangle,
and three columns.  The columns contain the indices of the nodes that go with each
triangle.

eleNodes = NodeIndexation(M, B);

Function ParalleloGrid sets up two arrays, one containing the s values for each node,
and other containing the t values.

[Si, Ti] = ParalleloGrid(M, T, B);

Estimating the Regression Function

The actual computation requires a discretization of the continuous variable t.  We define
the spacing between these discrete values by specifying the number of discrete values
within each of the M intervals.  A value of two or four is usually sufficient to ensure a
reasonably accurate approximation.

npts  = 4;
ntpts = M*npts;
delta = lambda/(2*npts);
tpts  = linspace(delta, T-delta, M*npts)';

Now we set up the design matrix that will be used in the discrete version of the regression
analysis.  This is a fairly length calculation.

psiMat  = DesignMatrixFD(emgfd0, npts, M, eleNodes, Si, Ti, B);

In any regression analysis we should check that our design matrix is not singular or near
singular.  This is especially important in approximating continuous integrals by discrete
values since too many values will lead to poor conditioning of the design matrix.  So we
check this out by looking at its singular values and the condition number.  Note that the
Matlab function full is needed here because the design matrix is set up in sparse storage
mode.

singvals  = svd(full(psiMat));
condition = max(singvals)/min(singvals);
disp(['Condition number = ',num2str(condition)])

Along with the design matrix, we need the corresponding vector of dependent variable
values.  Here’s where we set this up.

yMat  = eval_fd(lipfd0,tpts)';
yVect = reshape(yMat, N*M*npts, 1);

Now we carry out the least squares approximation that gives us our vector of regression
coefficients multiplying our basis functions.



bHat = psiMat\yVect;

Plotting the Regression Function

Once the coefficients defining the expansion of the regression function are available, we
now want to have a look at the regression function itself.  This is made easy by the built
in Matlab function trisurf.

trisurf(eleNodes, Si, Ti, bHat)
xlabel('\fontsize{12} s');
ylabel('\fontsize{12} t');
title(['Lip/EMG Data ','M = ',num2str(M),', B = ',num2str(B)])

A more refined plot is achieved by the following code, which produces a color version of
Figure 10.7 using the special function BetaEvalFD.

svec = linspace(0,T,13*6+1)';
tvec = linspace(0,T,13*6+1)';
betaMat = BetaEvalFD(svec, tvec, bHat, M, T, lambda, ...
                     eleNodes, Si, Ti, B);

subplot(1,1,1)
colormap(hot)
H = imagesc(tvec*1000, tvec*1000, betaMat);
xlabel('\fontsize{16} s (msec)')
ylabel('\fontsize{16} t (msec)')
axis([0,640,0,640])
axis('square')
Haxes = gca;
set(Haxes,'Ydir','normal')

Computing the Fit to the Data

We would also like to look at how well the model fits the data.  To do this, we must
compute the model approximation to the lip acceleration values.  Our computations
above were carried out using the centered data, so we must also compute an intercept
function α(t).

Next we set up a large super-matrix containing the approximated  lip acceleration curves
using the special function XMatrix.  This is also a lengthy calculation.

psiArray = XMatrix(emgfd, tmesh, M, eleNodes, Si, Ti, B);

The matrix of approximation values for the lip acceleration curves is constructed.

yHat1 = zeros(nfiney,N);



for i=1:N
    Xmati = squeeze(psiArray(i,:,:))';
    yHat1(:,i) = Xmati*bHat;
end

This approximation, however, is based only on the estimated regression function β(s,t).
To complete the approximation, we must get the intercept function α(t).  This requires
using the mean EMG curve as a model, and subtracting the fit that this gives from
themean lip acceleration.

psimeanArray = XMatrix(emgmeanfd, tmesh, M, eleNodes, Si, Ti, B);
yHatMean     = squeeze(psimeanArray)'*bHat;
lipmeanvec   = eval_fd(lipmeanfd, tmesh);
alphaHat     = lipmeanvec - yHatMean;

Of course, we now want to plot the intercept function.

plot(tmesh,alphaHat)
title('Estimated intercept function');

Here is the final fit to the data.

yHat = alphaHat*ones(1,N) + yHat1;

We plot the data and the fit to the data.

subplot(2,1,1)
plot(tmesh, yHat)
axis([0,T,-4,4])
subplot(2,1,2)
plot(tmesh, lipmat)
axis([0,T,-4,4])

We also plot the residuals.

subplot(1,1,1)
resmat = lipmat – yHat;
plot(tmesh, resmat)
axis([0,T,-4,4])

Assessing the Fit

Here is the error sum of squares function.

SSE = sum(resmat.^2,2);



To provide a benchmark against which we can assess this fit, we need to get the
corresponding error sum of squares function when the model is simply the mean lip
acceleration curve.

lipmat0 = eval_fd(lipfd0, tmesh);
SSY = sum(lipmat0.^2,2);

Now we can compute a squared multiple correlation function and plot it.  Don’t be
suprised, though, to see it go below zero;  the fit from the mean is not embedded within
the fit by the model.

RSQ = (SSY – SSE)./SSY;
subplot(1,1,1)
plot(tmesh,RSQ);
axis([0,0.64,-0.5,1])


