Functional Models for Test Items

Annotated Analyses in Matlab

In this chapter, we did four things:
First, we used an EM algorithm to estimate item response functions P;(] and their log-
odds counterparts Wi(0)l .
Then we used principal components analysis to study the variation in these functions.
We followed this with an estimation of the difference in performance between men and
women on selected items.
Finally we calculated arc length as a measure of performance and looked at its tangent for
selected items.
In these notes we will see how these results are computed using the Matlab versions of the FDA
functions, as well as some special Matlab functions for test analysis.

In these notes, we use the following notation:
N: The number of examinees, here 2115.
n: The number of items, here 60.
Q: The number of quadrature points (see below), here 21.

Before you begin, don’t forget to add the path to the functional data analysis functions.
On my system, thisis achieved by the command

addpath('../fdaM)

Inputting the Data

The raw data for the male examinees on the ACT Math Test are stored as 2115 rows of 60 0's and
1'sindicating success or failure on an item, respectively, in atext filecaled act m t xt . These
data are input as follows:

nit = 60; % Nunmber of itens
nex = 2115; % Nunber of exani nees
fid fopen('actmtxt','rt');

tenp = fscanf(fid, '%');
ACTnt est = reshape(tenp, [nit,nex])’

Note that the second argument * %' of the function f scanf instructions Matlab to read these
0’'sand 1'sin as characters rather than numbers. Storing a very large table like this as characters
grestly reduces the amount of memory used to store it.

Fixing the Charting Variable and Setting Quadrature Points and
Weights

First we set up the charting variable [0 used to map out position along the space curve. We will
follow psychometric tradition in requiring that this have a standard normal distribution. The
computation, however, will work with Q equally spaced values of [ranging between —3.3 and
3.3. These are called in the algorithm quadrature points [14, and are used to approximate the
integral used to calculate expected or marginal likelihood.

nq = 21; % nunber of quadrature points

thetamax = 3.3; thetanmin = -3.3; % range of theta val ues
t het aq = linspace(thetanm n, thetamax, nq)';

thetarng = [thetam n, thetamax];

The computation of the integral also requires some quadrature weights wg, one weight for each
quadrature point. These weights permit us to approximate the integral as follows:

0, f (a)da » éiwqf .)

It is shown in Ramsay and Rossi (2001) that a good method for choosing these quadrature
weights W, is to make them work for B-spline test functions, which roughly have the same shape
characterigtics as the integrands f(in the approximation above. The following code does this.

norder = 4; % Oder of the B-spline
nbasis = nq + norder - 2; % Nunber of basis functions
wgt g = gausswgt BS(t het aq, nbasis, norder);

The special function gausswgt BS can be found in the appendix at the end of this document.

The B-spline Basis for Approximating Log-Odds Functions

In this step we want to set up 11 B-spline basis functions of order 4, afairly standard choice of
basis. We use 11 functions so as to achieve sufficient flexibility in the estimated functions, and
we use a roughness penalty to control their smoothness.

nbasis = 11;
norder = 4;
wbasi s = create_bspline_basi s(thetarng, nbasis);

We will repeatedly need the matrix of values of these basis functions at the quadrature points.

phi mat = getbasi smatri x(thetaq, wbasis);

In addition, since we intend to use a roughness penalty, we require the roughness penalty matrix.
The pendlty in this caseis, asisfarly standard, on the size of the second derivative of the
estimated functions.

Kmat = get basi spenal ty(wbasis, 2);

Initializing the EM Algorithm

The EM algorithm is a method refining an initial estimate of the item response functions. The
following commands set up theinitial estimates of these functions, as well as the log-odds
functions corresponding to the 21 quadrature points. The special function FirstStep is givenin
the Appendix.

PO = First Step(ACTntest, thetaq);
W) = log(PO./(1-PO));

Theseinitial estimates are usually quite rough, and by converting the log-odds valuesto a
functional data object, we both smooth the initia rough values alittle, and set up an initial
estimate of the coefficients of the B-spline expansion for each item response function.

wfd0 = data2fd(W), thetaq, wbasis); %]l og-odds functions coefQ =
get coef (wf dO) ; % coefficients

The following two commands also provide the discrete function values corresponding to the
quadrature points. But they will now be smoother than those computed above.

w = eval (WfdO, thetaq); %initial |og-odds val ues

P = 1./(1+exp(-WD)); %initial probability val ues
Q =1- P % failure val ues

Wd = WdO; %initial functions W

coef = coefO; %initial coefficient val ues

In addition to initial estimates of the functions and coefficients, we aso want to set some
parameters for the algorithm itself.

| anbda = le-1; % snoot hi ng paranet er | anbda
penmat = | anbda. *Kmat ; % penalty matrix tinmes |anbda
iter = 0; %initialize iteration nunber
convtest = 1le-2; % convergence criterion

itermax = 60; % maxi mum nunber of iterations
F = 1el0; %initialize function val ue

Fol d = F + 2*convtest; %initialize old function val ue

Running the EM Algorithm

Now we're ready to run the EM agorithm. The agorithm itself consistes of repetitions of two
types of analysis. The E-step in which the expected or marginal likelihood is computed, and the
M-step in which this marginal likelihood is maximized with respect to the coefficients
determining the log-odds functions. The Matlab code uses awhi | e loop, in which convergence

of the algorithm is tested each time the initial whi | e command is executed. The loop is closed
by an end command. Hereisthe initial whi | e command; it checks for convergence and for
the current iteration number being less than the maximum allowed.

while Fold - F > convtest & iter < iternmax

The following statements are now inside of the loop. These display an initial heading on the first
iteration, and update the iteration number and the old function value.

if iter ==

disp('It. -log L penal ty F Fold - F);
end
iter = iter + 1;
Fold = F;

Hereisthe E step. The special function Est ep isfound in the Appendix.
[N, CN, CP, L, CL] = Estep(ACTntest, P, wgtq);

This step produces the following arrays:
N: A Q-vector containing an estimation of the number of examinees associated with each
guadrature point. These can be called the pseudo-sample-sizes.
CN: An n by Q matrix containing an estimation of the frequencies of success at each
quadrature point for each item. These can be called the pseudo-frequencies.
CP: An N by Q matrix containing estimated conditional probabilities associated with each
examinee' s response pattern conditional on ability being at each quadrature point.
L: An N-vector containing margina likelihood values for each examinee.
CL: An N by Q matrix of conditiona likelihood values for each examinee and each
guadrature point.

Theratiosif the pseudo-frequenciesin array CN to the pseudo-sample-sizesin array N
are themselves estimates of the probability of successes for pseudo-examinees whose ability is
given by the quadrature points. We can call these values pseudo-praobabilities.

These commands compute the current function value, which is the negative of the total marginal
likelihood plus the size of the roughness penalty.

% conpute penalized negative sum of marginal 1ikelihoods
logL = sum(log(L));

pen = sun(diag(coef' * penmat * coef));

F = -logL + pen;

Now we print out the current results.

fprintf('% ', [iter, -logL, pen, F, Fold - F]);
fprintf('\n");

Here comes the M-step. It outputs the updated coefficient matrix optimizing the total marginal
likelihood. The special function Mst ep is given in the Appendix.

coef = Mstep(CN, N, P, coef, phimt, penmat);

The last task in the loop is to update the q by n matrix of success probabilities associated with
each quadrature point.

P = 1./(1+exp(-phimat * coef));
The loop closes with and end statement.
End

For these data convergence was achieved in 30 iterations, and this took less than a minute on a
700 mherz personal computer running under Windows 98.

Our final act isto create afunctional data object for the final 1og-odds functions.

Wd = putcoef(Wd, coef);

Displaying the Results

These commands display all of the 60 log-odds functions.

pl ot (W d)
x|l abel (*\fontsize{16} \theta')
yl abel ("\fontsize{16} W\theta)')

These commands display for each item
- The probabilities of success as a solid curve.
The pseudo-probabilities, the ratios of estimated frequencies at quadrature points in array
CN to the estimated sample sizes at quadrature pointsin array N, as points.
Theinitial probabilitiesin array PO as a dashed curve.

item ndex = 1:nit;

for j = item ndex
plot(thetag, (CN(j,:)./N', 'o',
thetaq, P(:,j), "b-', L.
thetaq, PO(:,j), "g--')

axi s([thetamin, thetamax, 0, 1])
xl abel (*\fontsize{16} \theta')
yl abel ("\fontsize{16} P(\theta)')
title(['\fontsize{16} Item ' nunstr(j)])
pause

end

What do we see?
- Theitem response functionsin array P tend to track the pseudo-data fairly closely, but
are noticeably more smooth.
Both the pseudo-probabilitiesin CN(j , :) . / Nand the curve values are much smoother
than the initial curve estimatesin array PO.
Both the curve estimatesand the pseudo-probabilities can do disconcerting things at the
extremes of ability, where there are few examinees and therefore few actual responses to

determine the curves. More smoothing would probably not help this. But see Ramsay
and Rossi (2001) for a more sophisticated roughness penalty that cures this problem.

We might also like to see what the estimated distribution of abilitiesis. The EM agorithm
assumes that the abilities have a standard normal distribution, but the data may show something
different. Tolook at this, we use the following code to estimate the probability density function
and to display it.

pdf = wgtq' . *sunm(CP);

pdf = pdf./sum(pdf');

pl ot (t het aq, pdf)

xl abel (*\fontsize{16} \theta')

yl abel ("\fontsize{16} Density')

title('\fontsize{16} Probability Density Function for Trait Score
Val ues')

Actually, it does redly look pretty standard normal.

The following code plots the space curve shown in Figure 1 using the 21 points corresponding to
the quadrature points.

plot3(P(:,1), P(:,9), P(:,59), '"o-")
axis([0,1,0,1,0,1])

x|l abel (*\fontsize{16} Item1")

yl abel (" \fontsize{16} Item9')

zl abel ("\fontsize{16} Item59")
grid on

Displaying the Results with Arc Length

We saw that there are interesting arguments for replacing the values of [by arc length sasa
charting variable. Thefirst step is to compute the derivatives of the item response functions
P:(D) with respect to O at each quadrature point.

DW dmat
DPmat

= eval (Wd, thetaq, 1);

= P.*(1-P). *DW dmat ;

Next we compute the integrand in (4.3), namely the norm of the gradient vector, evaluated again
at each quadrature point.

DPsqr
DPnorm

sum((DPmat')."2);
sqrt (DPsqgr) ' ;

Here we compute the arc length measure of the length of the whole space curve. Note that the
last command approximates the integral in (4.3) by using the trapezoidal rule, a basic but highly
effective method for the numerical approximation of an integral.

Smax = (thetaq(2) - thetaq(l)).*(sum(DPnornm -
0.5.*(DPnorm(1) + Dpnorm(nq)));

Now we are ready to compute arc length values corresponding to each quadrature point. Here we
use the function monfn that evaluates monotone functions to compute these. The arc length
values corresponding to the quadrature points are in vector Svec.

Msfd = dat a2fd(l og(DPnorm, thetaq, wbasis);
Svec = nonfn(thetaq, Msfd);
Svec = Snmax. *Svec. / max(Svec);

Here we plot arc length as a function of slope, asin Figure 4.7.

pl ot (t hetaq, Svec)
x|l abel (*\fontsize{16} \theta')
yl abel (" \fontsize{16} Arc Length s')

We will also want to express the log-odds function as a function of arc length srather than To
do this we want to create a new basis, since arc length is defined over a different range of values
thanis [

Whrat = eval (Wd, thetaq);
Wsbasi s = create_bspline_basis([0, Smax], 16);
Wsf d = dat a2f d(Wrat, Svec, Wbasis);

One reason for switching to arc length measure is the fact that the tangent vector has unit length,
and therefore provides a natural measure of item discriminability. Here we compute the tangent
vector functions.

DsPrmat = DPnat ./ (DPnorntfones(1,nit));

Principal Components Analysis of Log-Odds Functions

The principal components analysis of the log-odds functions Wi(l is now a straightforward
application of the functional version of PCA. These three commands carry out the PCA and
apply a Varimax rotation to the resulting principal components or harmonics.

nharm = 4;
Wpcastr = pca(Wd, nharn);
Whcastr = varnk_pca(Wcastr);

Next we evaluate the harmonics of the log-odds functions at the quadrature points.
VWhar mmat = eval (Wpcastr. harnfd, thetaq);

We also need the values of the mean log-odds function and the mean item response function.

W dnean = nean(Wd);
Wrean = eval (Wdnean, thetaq);
Wreanmat = Wrean*ones(1, 4);

Prrean = exp(Wrean) ./ (1 + exp(Wrean));

Next we add and subtract a judicious amount of each harmonic to the mean log-odds function,
and convert the results to the corresponding item response functions.

Wonst = ones(nqg,1)*[2, 1, .5, .5];
Wreatp = Wreanmat + Wonst. *Wiar mmat ;
Wratm = Wreanmat - Wonst. *Whar mat ;
Pharp = exp(Wrmatp)./(1l+exp(Wmtp));
Pharm = exp(Wrmatn)./(1l+exp(Wmatn);

Finally, we plot the results.

titlestr = [l: 30%; ' |l: 31%;
T 17%; ' 1V 19%] ;
for j=1:nharm
subplot(2,2,j)
pl ot (t hetaq, Pnean, '--")
axi s([thetam n, thetamax, 0, 1])
text(thetaqg-.1, Pharp(:,j), "+")
text(thetaqg-.1, Pharn(:,j), '-")
title(['\fontsize{12} Harmonic ',titlestr(j,:)])
end

Appendix: Special Matlab Functions

Function Fi r st St ep

function PO = FirstStep(dichtest, thetaq)
% initialize EMalgorithmby finding initial probabilities
% Argunents:

% dichtest ... a nex by nit matrix of binary item scores

% t het aq ... set of quadrature points

% Return:

% PO ... ang by nit matrix of proportions

[nex,nit] = size(dichtest); % conpute no. exam nees and itens
ng = |l ength(thetaq); % nunber of trait val ues

% we want to make a histogram w th each bin centered
% on atrait value. First construct ng+l boundaries for bars

bounds = zeros(nqg+1, 1);
bounds(1) = -1el0;

bounds(ng+l1l) = 1el0;

for g = 2:nq
bounds(qg) = (thetaq(qg-1)+thetaq(q))/2;
end

% for each exami nee, conpute the index of the bar or bin
% containing his quantile value

gscore = normnv((21:nex)./(nex+1), 0, 1);
% get indices of bins corresponding to quantiles

bi ni ndex = zeros(nex, 1);

for i=1:nq
i ndex = (gscore <= bounds(i+1) & gscore > bounds(i));
bi ni ndex(index) = i;

end

% GCet prelinmnary estimates of |RF' s at thetaq val ues

% note: the data play a role here only in ternms of the

% sorting index array, sortindex. This array sorts the rows of
% the dichotonous response matrix according to the rank of

% the nunber right scores.

% conpute scores on the test
score = zeros(nex,1);
for i=1:nex
tenmp = doubl e(dichtest(i,:))-48;
%enp = temp(tenp ~= 2);
%score(i) = (sum(tenp)/length(tenp))*nit
score(i) = sum(tenp);

end

% sscore are the sorted scores, sortindex the indices that
% sort vector score. A random nornal deviate, nean O,
% std. dev. .01 is added to each score before sorting
% to sort tied values in random order.

[sscore, sortindex] = sort(score+0.01. *randn(nex, 1));

% for each item conpute proportion of exam nees in each bin
% that pass the test using function bin

biny = zeros(nqg, nit);

for j = 1:nit
tenp = doubl e(di chtest(sortindex,j))-48;
biny(:,j) = bin(ng, tenp, binindex);

end

% Function bound repl aces probability values in biny by
% 1/(2*NEX) if lower, or by 1 - 1/(2*NEX) if higher.

PO = bound(biny, nex);

Function bi n

function binx = bin(nbin, rgt,

% Bins v
% BI

% If MEANVRD is T,

% va
if nargin
binx = ze
bi nind =

i f nmeanwr
for i =
tenmp

if length(tenp) > 0, binx(i) = nean(tenp); end

end
el se
for i =
bi nx(
end
end

bi ni ndex, neanw d)

alues in vector RGI into bins indicated in vector

NI NDEX

lues in the bin, otherwise it is the sum

< 4, meanwrd = 1;
ros(nbin, 1);
uni que(bi ni ndex) ;

d

1:nbin
= rgt(bi ni ndex==i);

1: nbin

end

i) = sun(rgt(binindex==i));

Function bound

function pmat = bound(prmat, nex)

% replaces probability values in PVMAT by 1/ (2*NEX)

% or by
delta =
prmat di m
for j=1:
i ndex
if any
i ndex
if any
end

ta;

1 - 1/(2*NeX) if higher.
1/ (2*nex);
= size(pmat);
prmat di m(2)
= pmat(:,j) < del
(i ndex), pmat(index,j)

= pmat(:,j) > 1-de
(i ndex), pnat(index,j)

Function Est ep

function [N, CN, CP, L, CL] =

%
%
%
%

delta; end

ta;

1 - delta; end

Estep(di chtest, P, wgtq)

The E step of the EM al gorithm

di cht est
P

wot q

N by n matrix
Qby n matrix
Q by 1 vector

% get nunber of exanm nees and
[nex, nit]

%
%

Conmput e:

= size(dichtest);
Q=length(wgtq); % get nunber of quadrature weights

of binary item scores
of probabilities
of quadrature weights

nunber of itens

CL: Nby Qmtrix of conditional Iikelihoods,

i f

the value in the bin is the of the RGI

| owner,

%

%!_.

N mar gi nal |ikelihoods,
N by Q matri x of conditional probabilities, and
CN. n by Qnmatrix of conditional pseudo-frequencies
zeros(nex, Q;
L
zeros(nit,Q;
zeros(nex, 1);
log(P);
log(1l - P);
for i=1:nex
tenmp = (doubl e(dichtest(i,:))-48)";
%otniss = (tenp ~= 2);
% enp = tenp(notniss);
UCL(i,:) = exp(logP(:,notm ss)*tenp + ...
l oglnP(:,notmss)*(1l-tenp))';
CL(i,:) = exp(logP*tenmp + loglnP*(1-temp))";
%l ot (thetaq, CL(i,:)");
L(i) = C.(i,:)*wgtq;
CP(i,:) = wgtq" .*CL(i,:)./L(i);
UCN(notmiss,:) = CN(notmiss,:) + tenp*CP(i,:);
CN = CN + temp*CP(i,:);
Ypause
end
% Conpute Q margi nal pseudo-frequencies
N = sun{CP);

“g9qpss

o O
Q Q@
= T
Il

Function Mst ep

function newcoef = Mstep(CN, N, P, coef, phimat, pennat)

% Mstep

% for each itemin turn, mnimze criterion Fj with respect to
% val ues of coefficients cj

% CN ... nhit by Qmatrix of conditional pseudo frequencies
% N ... vector of Q margi nal pseudo frequencies

% P ... Qby nit matrix of probabilities

% coef ... Kby nit matrix of coefficients for basis functions
% phimat ... Qby K matrix of basis function val ues

% penmat ... Kby Kmatrix for penalizing coefficient roughness

nit = size(P, 2);
newcoef = coef;
iterlim= 10;

for j=1l:nit
Cj = coef(:,j); %initial coefficients
Pj =P(:,j); a4 = 1-P(:,j); %initial probabilities
W = diag(pj.*qj.*N); %initial weights
CN = OCN(j,:)'; % "Data" for this item
resj = CN - pj.*N; %initial residuals

% initial function value

Fj = -sum(CN .*log(pj)+(N-CN).*log(aj)) + cj’ *penmat*cj;
% gradient vector

Grat = -phimat' * resj + 2. *penmat *cj ;

% Hessian matrix

Hrat = phimat' * w * phimat + 2. *pennat;

% search direction

delta = Hmat \ Gmt;

% initial step size along direction

al pha = 1;

Fjnew = Fj + 1;

% take step, and if new function value less than old, quit
% otherw se halve step and try again.

% in any case, stop when step size gets too snall

iter = 0;

while (Fjnew > Fj & iter <= iterlim
iter = iter + 1;
cjnew = cj - alpha .* delta; % update coefficients
% Don't let coefficients get too large in either
% direction

cj new(cj new > 20) = 20; cjnew(cjnew < -20) = -20;
% update probabilities
pj new = 1./ (1l+exp(-phimat*cjnew)); gjnew = 1 - pjnew,
% conmput e new function val ue
Fjnew = -sum(CN . *l og(pj new) +(N -CNj). *l og(qgjnew)) + ...
Cj new *pennat *cj new,
%Wprintf('"% ', [j, iter, Fjnew, Fj]); fprintf('\n");
al pha = al pha/ 2; % hal ve step size
end
newcoef (:,j) = cjnew, % replace old coefficients by new
ones
end

Function gausswgt 3

function [wgt, integvec] = gausswgt3(thetaq, nbasis, norder)
% Quadrature weights for B-spline test functions

% set up fine nesh for estimating integrals

ng = | engt h(t het aq);

thetarng = [nin(thetaq), max(thetaq)];
delta = le-3;

thetafine = mn(thetaq):delta: max(thetaq);
nfine = l engt h(t het afi ne);

% set up spline basis

nor der = 4,

nbasi s = nq + norder - 2;

basi sobj = create_bspline_basis(thetarng, nbasis);
basi snqg = getbasismatri x(thetaq, basi sobj) ;
basi sfin = getbasi smatri x(thetafine, basisobj);

% conpute std. nornmal density val ues
kernel fn = (exp(-thetafine.~2/2)/sqrt(2*pi))";
% estimte integrals by trapezoidal rule

i ntegvec = delta.*(basisfin *kernelfn -
0.5.*(basisfin(1,:)'.*kernelfn(1l) +

basi sfin(nfine,:)".*kernelfn(nfine)));

% solve for weights giving | east squares sol ution

wgt = basisnqg' \i nt egvec;

